Robust utility maximization in markets with transaction costs

Huy N. Chau

joint work with Miklós Rásonyi

Alfréd Rényi Institute of Mathematics

Robust Techniques in Quantitative Finance, Oxford 3-7 September 2018

Outline

- Introduction
- Utility functions on the positive real line
- 3 Utility functions on the whole real line

Literature review

Uncertainty is usually modeled by a family of prior measures \mathcal{P} on the same canonical space. The dominated case: Quenez (2004), Schied (2006), etc. The non-dominated case: Tevzadze et al. (2013), Matoussi et al. (2015), etc.

Model-free approach: Hou and Obloj (2015), Cox et al. (2016), Burzoni et al. (2016), Burzoni et al. (2017), Acciaio et al. (2016), Bouchard and Nutz (2015) etc.

Existence results in a fairly general class of models are available only in discrete time: Nutz (2016), Blanchard and Carassus (2018), Neufeld and Šikić (2017), Bartl (2017), Bartl et al. (2017) and Rásonyi and Meireles-Rodrigues (2018).

Formulation of the problem

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, P)$ a filtered probability space.

 Θ be a (non-empty) set.

There are two assets: a riskless asset $S^0=1$ and a risky asset, whose dynamics is unknown.

A family S^{θ} , $\theta \in \Theta$ of adapted, continuous positive processes.

No condition is imposed on Θ and on S^{θ} .

Example: The robust Black-Scholes market model

$$dS_t^{(\mu,\sigma)} = S_t^{(\mu,\sigma)}(\mu dt + \sigma dW_t).$$

$$\Theta = \{ \theta = (\mu, \sigma) \in \mathbb{R}^2 : \underline{\mu} \le \mu \le \overline{\mu}, \ \underline{\sigma} \le \sigma \le \overline{\sigma} \}.$$

See also Biagini and Pinar (2017), Neufeld and Nutz (2018) (Lévy processes), Lin and Riedel (2014).

Advantages

This approach

- is particularly tractable and easily implemented when it comes to calibration.
- simplifies technical issues: the canonical setting with problems concerning null events, filtration completion, etc. The measurable selection arguments, the analytic properties, see Bouchard and Nutz (2015), Biagini et al. (2017) or Nutz (2016).
- In Rásonyi and Meireles-Rodrigues (2018): an example lies outside the framework of prior measures \mathcal{P} , since lack of the analytic graph \mathcal{P}_t .

Drawbacks and solutions

- Consider: $\sup_{H} \inf_{\theta} EU(W_T(\theta, H))$ and $\sup_{W} \inf_{Q \in \mathcal{P}} E^Q U(W_T)$.
- No "abstract" versions.
- Komlós-type arguments on the space L^0 cannot be employed.
- No convexity in θ . Dual problem?
- The candidate dual problem in this setting does not, in general, admit a solution (see Remark 2.3 of Bartl (2017)).
- Work with the primal problem.
- Under proportional transaction costs.
- Komlós-type arguments for the space of finite variation processes and in an Orlicz space context.

A topological space of FV processes

 \mathcal{V} : the family of non-decreasing, right-continuous functions on [0, T] which are 0 at 0.

Let r_k , $k \in \mathbb{N}$ be an enumeration of $Q := (\mathbb{Q} \cap [0, T]) \cup \{T\}$ with $r_0 = T$. For $f, g \in \mathcal{V}$, define a metric

$$\rho(f,g) := \sum_{k=0}^{\infty} 2^{-k} |f(r_k) - g(r_k)|.$$

Let **V** denote the set of $H=(H^{\uparrow},H^{\downarrow})$ where $H_t^{\uparrow},H_t^{\downarrow}$, $t\in[0,T]$ are optional processes, $H^{\uparrow}(\omega),H^{\downarrow}(\omega)\in\mathcal{V}$.

We equip **V** with the metric

$$\varrho(H,G) := E[\rho(H^{\uparrow},G^{\uparrow}) \wedge 1] + E[\rho(H^{\downarrow},G^{\downarrow}) \wedge 1], \ H,G \in \mathbf{V}.$$

A compactness result

Lemma

Let $H(n) \in \mathbf{V}$, $n \in \mathbb{N}$ be such that

$$\sup_{n\in\mathbb{N}}E^{Q}[H_{T}^{\uparrow}(n)+H_{T}^{\downarrow}(n)]<\infty$$

for some $Q \sim P$. Then there is $H \in \mathbf{V}$ and there are convex weights $\alpha_j^n \geq 0$, $j = n, \ldots, M(n)$, $\sum_{j=n}^{M(n)} \alpha_j^n = 1$, $n \in \mathbb{N}$ such that

$$\tilde{H}(n) := \sum_{j=n}^{M(n)} \alpha_j^n H(j)$$

satisfy, for each $t \in [0, T]$, $\tilde{H}^{\uparrow}(n)_t \to H_t^{\uparrow}$ and $\tilde{H}^{\downarrow}(n)_t \to H_t^{\downarrow}$, $n \to \infty$ almost surely. In particular, $\tilde{H}^{\uparrow}(n) \to H^{\uparrow}$ and $\tilde{H}^{\downarrow}(n) \to H^{\downarrow}$, $n \to \infty$ almost surely in \mathcal{V} .

Consistent price systems

Definition

A λ -consistent price system (λ -CPS) for S is a pair (\tilde{S}, Q) of a probability measure $Q \sim P$ and a Q local martingale \tilde{S} such that

$$(1-\lambda)S_t \leq \tilde{S}_t \leq S_t, \quad a.s. \quad \forall t \in [0,T].$$
 (1)

A λ -strictly consistent price system (λ -SCPS) is a CPS such that the inequalities are strict in (1).

See also Kabanov and Safarian (2009), Guasoni et al. (2010), and Guasoni et al. (2008).

Trading strategies

- Trading strategies: $H \in \mathbf{V}$.
- Denote: H^{\uparrow} for buying and H^{\downarrow} for selling.
- The position in the risky asset $\phi = H^{\uparrow} H^{\downarrow}$.
- The liquidation value is defined by

$$W_t^{x,\text{liq}}(\theta, H) := x - \int_0^t S_u^{\theta} dH_u^{\uparrow} + \int_0^t (1 - \lambda) S_u^{\theta} dH_u^{\downarrow}$$

+ $\phi_t^+ (1 - \lambda) S_t^{\theta} - \phi_t^- S_t^{\theta}.$

- Neither concave nor convex in H. Assume $\phi_T = 0$: to recover concavity.
- $V^{x}(\theta, H) = x \int_{0}^{t} S_{u}^{\theta} dH_{u}^{\uparrow} + \int_{0}^{t} (1 \lambda) S_{u}^{\theta} dH_{u}^{\downarrow} + \phi_{t} \tilde{S}_{t}^{\theta}$

Utility functions on \mathbb{R}_+

Definition (Admissibility)

Let x > 0. Denote

$$\mathcal{A}_0^\theta(x) := \{ H \in \mathcal{A}^\theta(x): \ W^{x, \text{liq}}_t(\theta, H) \geq 0 \ \text{a.s.}, \phi_T = H_T^\uparrow - H_T^\downarrow = 0 \},$$

and $A(x) = \bigcap_{\theta \in \Theta} A_0^{\theta}(x)$.

Utility functions on \mathbb{R}_+

Definition (Admissibility)

Let x > 0. Denote

$$\mathcal{A}_0^{\theta}(x) := \{ H \in \mathcal{A}^{\theta}(x) : \ W_t^{x, \text{liq}}(\theta, H) \ge 0 \text{ a.s.}, \phi_T = H_T^{\uparrow} - H_T^{\downarrow} = 0 \},$$

and
$$\mathcal{A}(x) = \bigcap_{\theta \in \Theta} \mathcal{A}_0^{\theta}(x)$$
.

Investors want to find the optimizer for

$$u(x) := \sup_{H \in \mathcal{A}(x)} \inf_{\theta \in \Theta} EU(W_T^{x,liq}(\theta, H)).$$

Finiteness of the value function

- No uncertainty. In discrete time, Rásonyi and Stettner (2006) prove that $NA + "u(x) < \infty" \Rightarrow \exists H^*$.
- Uncertainty. Nutz (2016): an example with $u(x) < \infty$ but there is no optimizer. Since the lack of upper-semicontinuity property in one model.
- Condition: $E^P U^+(x + h\Delta S) < \infty, \forall h, P \text{ from Nutz (2016)},$ Blanchard and Carassus (2018).

Some notations

- Dual function $V(y) := \sup_{x>0} (U(x) xy), \quad y>0$
- ullet The primal and dual value functions for the heta-model are

$$u^{\theta}(x) := \sup_{f \in \mathcal{C}^{\theta}(x)} EU(f), \qquad v^{\theta}(y) := \inf_{h \in \mathcal{D}^{\theta}(y)} EV(h).$$

• $u^{\theta}(x) \leq v^{\theta}(y) + xy$.

The first result

Theorem

Let $U:(0,\infty)\to\mathbb{R}$ be a nondecreasing, concave function and $U(\infty)>0$. Assume that

- For each $\theta \in \Theta$ and for all $0 < \mu < \lambda$, the price process S^{θ} admits a μ -CPS.
- The dual problem for the model θ , is finite for all $\theta \in \Theta$.

The robust utility maximization problem admits a solution.

 $u(x) < \infty$? Candidate for H^* ? Admissibility? Upper semicontinuity?

Utility functions on ${\mathbb R}$

Assumption

 $U: \mathbb{R} \to \mathbb{R}$ is bounded from above, nondecreasing, concave, U(0) = 0. Define the convex conjugate by

$$V(y) := \sup_{x \in \mathbb{R}} (U(x) - xy), \qquad y > 0.$$

We also assume that

$$\lim_{x \to -\infty} \frac{U(x)}{x} = \infty, \tag{2}$$

$$\limsup_{y \to \infty} \frac{V(2y)}{V(y)} < \infty. \tag{3}$$

Admissibility

- $X_t \ge -C, \forall t$. Too small when S is non locally bounded.
- $X_t > -cW$ where $EU(-\alpha W) > -\infty$. Biagini and Frittelli (2005).
- supermartingale property. Ansel and Stricker (1994): $H \cdot S$ is a supermartingale iff $(H \cdot S)^-$ is dominated by a martingale.
- Six Authors' paper, Kabanov and Stricker (2002) (exponential *U*), Schachermayer (2003) (general *U*), Owen and Žitković (2009) (random endowment).
- Biagini and Sîrbu: "Moreover, realistic market models are incomplete and thus the description of the whole $\mathcal{M}_{\sigma} \cap \mathcal{P}_{V}$ is often impossible. Consequently, checking admissibility with respect to this definition is practically unfeasible".

Admissibility

Define

$$\mathcal{M}_V^{\theta} := \{Q^{\theta}: (\tilde{S}^{\theta}, Q^{\theta}) \text{ is a consistent price system, } EV(dQ^{\theta}/dP) < \infty\},$$

$$V^{\mathsf{x}}(\theta, H) = \mathsf{x} - \int_0^t S_u^{\theta} dH_u^{\uparrow} + \int_0^t (1 - \lambda) S_u^{\theta} dH_u^{\downarrow} + \phi_t \tilde{S}_t^{\theta}$$

Definition

We define

$$\mathcal{A}^{ heta}(x) = \left\{ H \in \mathbf{V} : \phi_T = 0, \ V^{ imes}(heta, H) \ \text{is a } Q^{ heta}\text{-supermartingale}
ight.$$
 for each consistent price system $(\tilde{S}^{ heta}, Q^{ heta})$ such that $Q^{ heta} \in \mathcal{M}^{ heta}_V
ight\}$

and
$$A(x) := \bigcap_{\theta \in \Theta} A^{\theta}(x)$$
.

The second result

The optimization problem

$$u(x) = \sup_{H \in \mathcal{A}(x)} \inf_{\theta \in \Theta} EU(W_T^{x,liq}(\theta, H)).$$

Theorem

Let Assumption 5 hold, and suppose that for each $\theta \in \Theta$, the price process S^{θ} admits a λ -SCPS $(Q^{\theta}, \tilde{S}^{\theta})$ such that $Q^{\theta} \in \mathcal{M}_{V}^{\theta}$. Then the robust optimization problem admits a solution.

 $u(x) < \infty$? Candidate for H^* ? Admissibility? Upper semicontinuity?

Ansel and Stricker (1994): $H \cdot S$ is a supermartingale iff $(H \cdot S)^-$ is dominated by a martingale.

$$U^{-}(W)$$
 to W^{-} ?

Orlicz spaces

 $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ is a Young function if it is convex with $\Phi(0) = 0$ and $\lim_{x \to \infty} \Phi(x)/x = \infty$.

The set

$$\mathit{L}^{\Phi} := \{X \in \mathit{L}^{0} : E\Phi(\gamma|X|) < \infty \text{ for some } \gamma > 0\}$$

is a Banach space with the following norm

$$||X||_{\Phi} := \inf\{\gamma > 0 : X \in \gamma B_{\Phi}\}$$

where $B_{\Phi}:=\{X\in L^0: E\Phi(|X|)\leq 1\}$, the unit ball of $L^{\Phi}.$

Define the conjugate function $\Phi^*(y) := \sup_{x \geq 0} (xy - \Phi(x)), y \in \mathbb{R}_+$. This is also a Young function and $(\Phi^*)^* = \Phi$.

 Φ is of class Δ_2 if $\lim_{x\to\infty} \frac{\Phi(2x)}{\Phi(x)} < \infty$.

A compactness result

Lemma (Delbaen, Owari 2018)

Let Φ be a Young function of class Δ_2 and let $\xi_n, n \geq 1$ be a norm-bounded sequence in L^{Φ^*} . Then there are convex weights $\alpha_j^n \geq 0$, $n \leq j \leq M(n)$, $\sum_{i=n}^{M(n)} \alpha_i^n = 1$ such that

$$\xi_n' := \sum_{j=n}^{M(n)} \alpha_j^n \xi_j$$

converges almost surely to some $\xi \in L^{\Phi^*}$ as $n \to \infty$, and $\sup_n |\xi'_n|$ is in L^{Φ^*} .

Recall: $\lim_{x \to -\infty} \frac{U(x)}{x} = \infty$, $\lim \sup_{y \to \infty} \frac{V(2y)}{V(y)} < \infty$.

Supermartingale property: control the losses, use Fatou's Lemma.

An example

Let us consider

$$S_t = 1 + t + rac{1}{2\pi} \operatorname{arctan}(W_t), \qquad t \in [0,1].$$

If $\lambda<3/7$ then $(1-\lambda)S_1>1$ a.s, therefore, there is no consistent price system. If $\lambda\geq2/3$, then

$$S_t(1-\lambda) \le 3/4 \le S_t, \ t \in [0, T].$$

In other words, ($\tilde{S} \equiv 3/4, P$) is a consistent price system.

Conclusion

- The existence results, no passing to dual problems
- Future: duality?

Thank you for your attention!

- Acciaio, B., Beiglböck, M., Penkner, F., and Schachermayer, W. (2016). A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. *Mathematical Finance*, 26(2):233–251.
- Bartl, D. (2017). Exponential utility maximization under model uncertainty for unbounded endowments. *Preprint*. Retrieved from https://arxiv.org/abs/1610.00999v2.
- Bartl, D., Cheridito, P., and Kupper, M. (2017). Robust utility maximization with medial limits. *Preprint, arXiv:1712.07699*.
- Biagini, S., Bouchard, B., Kardaras, C., and Nutz, M. (2017). Robust fundamental theorem for continuous processes. *Mathematical Finance*, 27(4):963–987.
- Biagini, S. and Pinar, M. C. (2017). The robust Merton problem of an ambiguity averse investor. *Mathematics and Financial Economics*, 11(1):1–24.
- Blanchard, R. and Carassus, L. (2018). Multiple-priors optimal investment in discrete time for unbounded utility function. *Annals of Applied Probability*. Retrieved from http://www.imstat.org/aap/future_papers.html.

- Bouchard, B. and Nutz, M. (2015). Arbitrage and duality in nondominated discrete-time models. *Annals of Applied Probability*, 25(2):823–859.
- Burzoni, M., Frittelli, M., and Maggis, M. (2016). Universal arbitrage aggregator in discrete-time markets under uncertainty. *Finance and Stochastics*, 20(1):1–50.
- Burzoni, M., Frittelli, M., Maggis, M., et al. (2017). Model-free superhedging duality. *The Annals of Applied Probability*, 27(3):1452–1477.
- Campi, L. and Schachermayer, W. (2006). A super-replication theorem in Kabanov's model of transaction costs. *Finance and Stochastics*, 10(4):579–596.
- Cox, A. M., Hou, Z., and Obłój, J. (2016). Robust pricing and hedging under trading restrictions and the emergence of local martingale models. *Finance and Stochastics*, 20(3):669–704.
- Guasoni, P. (2002). Optimal investment with transaction costs and without semimartingales. *The Annals of Applied Probability*, 12(4):1227–1246.

- Guasoni, P., Rásonyi, M., and Schachermayer, W. (2008). Consistent price systems and face-lifting pricing under transaction costs. *Annals of Applied Probability*, pages 491–520.
- Guasoni, P., Rásonyi, M., and Schachermayer, W. (2010). The fundamental theorem of asset pricing for continuous processes under small transaction costs. *Annals of Finance*, 6(2):157–191.
- Hou, Z. and Obloj, J. (2015). On robust pricing-hedging duality in continuous time. arXiv preprint arXiv:1503.02822.
- Kabanov, Y. and Safarian, M. (2009). *Markets with transaction costs*. Springer.
- Kabanov, Y. M. (1999). Hedging and liquidation under transaction costs in currency markets. *Finance and Stochastics*, 3(2):237–248.
- Lin, Q. and Riedel, F. (2014). Optimal consumption and portfolio choice with ambiguity. *Preprint, arXiv:1401.1639*.
- Matoussi, A., Possamaï, D., and Zhou, C. (2015). Robust utility maximization in nondominated models with 2BSDE: the uncertain volatility model. *Mathematical Finance*, 25(2):258–287.
- Neufeld, A. and Nutz, M. (2018). Robust utility maximization with Lévy processes. To appear in Mathematical Finance.

- Neufeld, A. and Šikić, M. (2017). Robust utility maximization in discrete-time markets with friction. *Preprint*. Retrieved from https://arxiv.org/abs/1610.09230v1.
- Nutz, M. (2016). Utility maximization under model uncertainty in discrete time. *Mathematical Finance*, 26(2):252–268.
- Owen, M. P. and Žitković, G. (2009). Optimal investment with an unbounded random endowment and utility-based pricing. *Mathematical Finance*, 19(1):129–159.
- Quenez, M.-C. (2004). Optimal portfolio in a multiple-priors model. In *Seminar on Stochastic Analysis, Random Fields and Applications IV*, pages 291–321. Springer.
- Rásonyi, M. and Meireles-Rodrigues, A. (2018). On utility maximisation under model uncertainty in discrete-time markets. *Preprint,* arXiv:1801.06860.
- Schachermayer, W. (2003). A super-martingale property of the optimal portfolio process. *Finance and Stochastics*, 7(4):433–456.
- Schied, A. (2006). Risk measures and robust optimization problems. *Stochastic Models*, 22(4):753–831.

Tevzadze, R., Toronjadze, T., and Uzunashvili, T. (2013). Robust utility maximization for a diffusion market model with misspecified coefficients. *Finance and Stochastics*, 17(3):535–563.